Lisa Bugnet

Supervision: **R.A. García, S. Mathur** (Data analysis) **S. Mathis** (Theoretical works) Main collaborations : V. Prat, G. Davies, A. Astoul, K. Augustson, C. Neiner

GLOBAL CHARACTERISATION OF SOLAR-TYPE STARS AND INTERNAL MAGNETISM ALONG THE EVOLUTION

Machine learning for global asteroseismology and New diagnosis for internal magnetic fields

SOLAR-TYPE STARS ALONG THE EVOLUTION

SOLAR-TYPE STARS ALONG THE EVOLUTION

SOLAR-TYPE STARS ALONG THE EVOLUTION

4 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

DETECTABLE STELLAR OSCILLATIONS (ALONG THE EVOLUTION)

ASTEROSEISMOLOGY OF SOLAR-TYPE STARS (IN A NUTSHELL)

INTERNAL ROTATION OF STARS (ALONG THE EVOLUTION)

CHALLENGING QUESTIONS

Mosser et al., 2012 Deheuvels et al., 2012, 2014,2015 Gehan et al., 2018 Ceillier et al., 2013 Cantiello et al., 2014

Angular momentum transport problem along the evolution

Low-amplitude I=1 mixed modes

Garcia et al., 2014 Mosser et al., 2017 Fuller et al., 2015 Cantiello et al., 2016

(a)

180

(b)

220

MAGNETIC FIELD IS ONE OF THE MOST PROMISING CANDIDATE

INTERNAL MAGNETISM INSIDE STARS (ALONG THE EVOLUTION)

COMPLEMENTARY METHODS IN SYNERGY

Stellar evolution model MESA Stellar pulsation model GYRE

Photometric & Asteroseismic analyses: Red giants and Solar-like stars PSD analysis

Random Forest, Neural network

1 FLIPER (FLICKER IN POWER)

13 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

1

14 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

1

FLIPERCLASS: SOLAR-LIKE STARS AUTOMATIC DETECTION

1

1

Le Saux, Bugnet et al., in prep

Automatic detection of low-amplitude mixed-modes: sample on which to study the frequency pattern: signature of internal magnetic field ?

Detection of stars with partial low amplitude: work in progress Garcia et al., 2014 TO UNDERSTAND OBSERVATIONS:

2

EFFECT OF AN AXISYMMETRIC FOSSIL MAGNETIC FIELD ALIGNED WITH ROTATION AXIS ON MIXED-MODE FREQUENCIES

TOPOLOGY

TO UNDERSTAND OBSERVATIONS:

2

EFFECT OF AN AXISYMMETRIC FOSSIL MAGNETIC FIELD ALIGNED WITH ROTATION AXIS ON MIXED-MODE FREQUENCIES

AMPLITUDE

For M>1.3 Ms, convective core on the MS: dynamo-generated field that can persist through the RGB as a fossil field in the core.

Stello et al., 2016

Internal magnetic field at the end of MS: amplitude 0.01-1MG

Magnetic flux conservation

Internal magnetic field on top of RGB: amplitude **0.1-10MG**

MAGNETIC AND ROTATIONAL PERTURBATIONS ON MIXED MODE FREQUENCIES

2

Goupil et al., 2013

First-order perturbation:

Goupil et al., 2013

2 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

Bugnet et al., in prep

$$\delta\nu_{\rm mag} = \delta\nu_{\rm g,mag}\zeta + \delta\nu_{\rm p,mag}(1-\zeta)$$

Mathis, Bugnet et al., in prep

2

Duez et al., 2010

Magnetic field amplitude $B_0 = IMG$ coherent with dynamo action in the core of main-sequence stars First-order perturbation:

$$\delta \nu_{\rm mag} = \delta \nu_{\rm g,mag} \zeta + \delta \nu_{\rm p,mag} (1 - \zeta)$$

Mathis, Bugnet et al., in prep

State of the art for rotation:

$$\left(\frac{\delta\omega}{\omega_0}\right)_{\rm g,rot} \propto \frac{\int_0^1 \frac{\Omega(x)N}{x} dx}{\int_0^1 \frac{N}{x} dx}$$

Magnetic amplitude B₀=1MG coherent with dynamo action in the core of main-sequence stars

May allow inversion of the magnetic field as for rotation...

24 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

2

Bugnet et al., in prep

2

Other known sources of asymmetry:

Easily distinguishable: Non-degenerate effects

<u>Negligible:</u> second-order rotational effects, buoyancy glitches, latitudinal differential rotation

26 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

Bugnet et al., in prep

2 MIXED MODE MAGNETIC FREQUENCY SHIFTS EVOLUTION ON THE RGB FOR A TYPICAL M =1.5 M_{\odot} , Z=0.02 RED GIANT

27 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

CHALLENGING QUESTION 1:

2

How can we explain the lack of power observed in dipolar modes ?

2 COMPARISON WITH CRITICAL FIELD FOR MODE SUPPRESSION FOR A TYPICAL M =1.5M $_{\odot}$, Z=0.02, ν_{max} =300 µHz RED GIANT

29 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

CHALLENGING QUESTION 2:

2

The rotation rate of RG cores is about **2 orders of magnitude lower** than the value predicted by the standard theory of angular momentum. How can we explain observations ?

CHARACTERISTIC TIME FOR THE MAGNETIC TORQUE TO FLATTEN THE ROTATIONAL PROFILE OF THE RADIATIVE INTERIOR

Data analysis: Machine learning for global asteroseismology

- FliPer: new independent global method for the recognition and estimation of surface gravity of solar-like stars
- FliPerclass: new independent global method for the recognition and estimation of surface gravity of solar-like stars
- Neural network for the detection of low-amplitude dipolar mixed modes

Theoretical work on internal magnetism inside RG (and SG):

- Shift towards higher frequencies, asymmetry should be detectable in data. Increases with the star evolution.
- Critical observable axisymmetric fossil field aligned with rotation : ~ 1 MG
- Critical field is of the same order of magnitude than field needed to suppress modes: splitting before suppression ?
- Redistribution of AM inside the radiative interior in about a year: magnetism very efficient to transport AM

FUTURE & PROSPECTS

The search for **magnetic signature inside data:** Bayesian comparison of different fitting models to the data e.g. Benomar et a., 2008, Davies et. al., 2016

Estimation of the **rotation profile** for sub-giant stars presenting magnetic signature ? (if found)

Method similar to Gehan et al., 2018

Core

Surface

Application of ML to extract surface rotation rates Impact on **gyrochronology**

Breton et al., in prep

Non-axisymmetric pattern: hyperfine

structure expected e.g. Goode & Thompson 1989

Non-fossil field pattern: rotation driven

magnetism

e.g. Fuller et. al., 2019

Expression of the **coupling factors** in presence of magnetism

SUPPLEMENTARY MATERIALS

33 Lisa Bugnet AIM/DAp CEA Saclay - Lagrange (remote) seminar - June 2020

The rotation rate of RG cores is about **2 orders of magnitude lower** than the value predicted by the standard theory of angular momentum. How can we explain observations ?

Equation of motion:

$$\rho r^2 \sin^2 \theta \frac{\partial \Omega}{\partial t} = \frac{1}{4\pi} \vec{B_p} \cdot \vec{\nabla} [r \sin \theta B_\phi]$$

- + Equation of induction if B_p is constant $\frac{\partial B_{\phi}}{\partial t} = r(\vec{B_p}.\vec{\nabla})\Omega$
- ➡Linear wave equation:

$$\rho r^2 \sin^2 \theta \frac{\partial^2 \Omega}{\partial t^2} = \frac{1}{4\pi} \vec{B_p} \cdot \vec{\nabla} [r^2 \sin^2 \theta (\vec{B_p} \cdot \vec{\nabla}) \Omega]$$

Order of magnitude:

$$R^{2} \frac{\Omega}{t_{AM}^{2}} = \frac{1}{4\pi\rho} \frac{B_{p}^{2}}{R_{\Delta\Omega}^{2}} R^{2} \Omega \qquad v_{A,p} = \frac{|B_{p}|}{\sqrt{4\pi\rho}}$$
$$\tau_{AM} = \frac{R_{\Delta\Omega}}{v_{A,p}} \qquad \text{Mestel et al., 1987}$$

Very fast redistribution of angular momentum